Photoproduction of Cascade Hyperons

PhD Qualifying Oral Exam Presentation

John T. Goetz

BMK Nefkens, Committee Chair UCLA Dept. Physics & Astronomy

August 31, 2007

< ∃⇒

- ∢ ≣ →

Title Outline Part I: Motivation and Theory Part II: The Experiment and Analysis Techniques Part III: Other Work

Outline of Part I: Theory and Motivation

Motivation

- Cascades
- The Nucleon

Quantum Chromodynamics

- Theory and Approximations
- Quark-Gluon Model
- Spectroscopy

The Cascade Hyperons

- Advantages
- Comparison With Other Baryons
- Narrow Widths

Part I: Motivation and Theory Part II: The Experiment and Analysis Techniques Part III: Other Work

Outline of Part II: Experiment and Analysis

4 Experiment

- Photoproduction of Ξ's
- JLab and CLAS Detector
- Master Trigger & Skims

5 Analysis Methods

- Calibration
- Previous Analysis

-

Outline

Part III: Other Work

Outline of Part III: Other Work

6 Computing Farm at UCLA • Nefkens Computing Cluster

- E -

Motivation QCD Cascades

Part I

Motivation and Theory

< ∃⇒

< ≣⇒

Cascades

There are many exciting reasons to study the Cascade Hyperons

- Direct correlation to the nucleon (proton and neutron) which makes up >99% of the mass of the observable universe
- Provides test for flavor independence of strong force (SU(3) flavor symmetry)
- Gives direct measurement of isospin symmetry breaking (interchangeability of *u* and *d* quarks)
- Narrower than other hadrons (N's, Δ 's, Σ 's, etc.)
- $\bullet\,$ There are theories with solvable approximation schemes in the mass range of the Ξ spectrum

The Nucleon

The proton is the only stable particle with *currently* observable structure.

1932 measurement of proton magnetic-dipole moment (Otto Stern). So the proton has structure, but is it made of quarks and gluons?

Figure: Baryon ground-state octet organized according to the Eightfold Way. Ways to investigate the nucleon (these are interrelated)

- precision measurements
- find patterns in excited spectrum
- search for rare processes and exotic particles

- ∢ ≣ →

search for predicted resonances

QCD – the leading theory of the strong force

OCD

$$\mathcal{L}_{\rm QCD} = -\sum_{q} \overline{\psi}_{q} m_{q} \psi_{q} + i \overline{\psi}_{q} \gamma^{\mu} d_{\mu} \psi_{q} - g(\overline{\psi}_{q} \gamma^{\mu} T_{a} \psi_{q}) G_{\mu}^{a} - \frac{1}{4} G_{\mu\nu}^{a} G_{a}^{\mu\nu}$$

Some problems:

- non-perturbative QCD has not been solved completely
- allows for gluon-gluon interactions which yields divergent slavery (asymptotic freedom allows for some calculations to be made)
- approximations are usually valid only over certain energies

I. Goetz

approx. methods for QCD

- quark & gluon model
- $\frac{1}{N_c}$ expansion
- Lattice-Gauge
- χ -perturbation

- ∢ ≣ →

Jefferson Lab

Motivation QCD Cascades Theory and Approximations Quark-Gluon Model Spectroscopy

Quark-Gluon Model

Quarks spin = 1/2		
Flavor	Approx. Mass GeV/c ²	Electric charge
U up	0.003	2/3
d down	0.006	-1/3
C charm	1.3	2/3
S strange	0.1	-1/3
t top	175	2/3
b bottom	4.3	-1/3

Baryons are made of three quarks in a colorless combination of red, green, and blue.

- They are held together by gluons.
- SU(3) Flavor symmetry means treating the u, d, and s quarks the same.
- This means the only difference in the spectrum of the N*'s and the ±'s will be the mass (assuming a Lagrangian as shown prior)

First steps for investigating the strong force: Spectroscopy

QCD Cascades

If the proton is made of three spin-1/2 quarks, then its "atomic" excitation spectrum must contain a certain number of levels with certain quantum numbers. At this time more than half of the low-lying states needed to test this basic picture are missing. [Taken from jlab.org]

A more complete catalog of all observable hadrons will facilitate direct tests of QCD calculations.

This will indicate the rough correlations between quarks inside the hyperon.

Advantages Comparison With Other Baryons Narrow Widths

Ξ 's are uniquely suited to testing QCD

Advantage of doubly-strange hadrons

- test of flavor independence of the strong force
- narrow excited states when compared with N*'s
- straight-forward measurement of isospin symmetry breaking
- fall in mass-region accessible to Lattice QCD

Figure: Baryon Decuplet.

< E.

Advantages Comparison With Other Baryons Narrow Widths

Evidence for Narrow Widths

Cascades

Figure: N^{*} and Δ states overlap in many places due to their large widths. A's and Σ 's do little better. Ξ 's are the most narrow and thus can be separated more easily.

Motivation Advantages QCD Comparison With Othe Cascades Narrow Widths

Explanation for Narrow Widths

 $\Xi 's$ have a narrower width than $\Sigma 's$ and $N^* 's$ due to a simple combinatorial argument

consider the following (strong) decays:

When These decay to a pion, the \bar{u} has the option of coupling with any of the Δ 's three quarks whereas for the Ξ , there is only one option. The alternative is to have the baryon decay to the much heavier kaon.

Part II

The Experiment

æ

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶

Photoproduction of Ξ 's

Photoproduction provides a very clean signal which allows a straight-forward analysis due to small number of tracks.

By exciting the proton via an electromagnetic interaction we avoid introducing any kind of strong interaction outside of the intermediate and decay processes.

Figure: Example of Ξ^{*-} photoproduction via intermediate Y^{*} decay. Notice the relatively few number of tracks that need to be observed for identification of the cascade baryons.

4 E.

Photoproduction of Ξ 's JLab and CLAS Detector Master Trigger & Skims

JLab, Newport News, Virginia

Photoproduction of Ξ 's JLab and CLAS Detector Master Trigger & Skims

The CLAS Detector

JLab from the air

The CLAS Detector (upstream)

<ロ> <四> <四> <日> <日> <日</p>

J. Goetz

Photoproduction of Ξ 's JLab and CLAS Detector Master Trigger & Skims

The CLAS Detector Components

- six sectors three 'planes'
- radiator & electron tagger
- start counter (scintillator)
- magnets (toroidal)
- drift chambers (3x per sector)
- Čerenkov Detectors
- Time of Flight Detectors
- Electromagnetic Calorimeter

Photoproduction of Ξ's JLab and CLAS Detector Master Trigger & Skims

Beam and Electron Tagger System

the profile of the CLAS e^- beam is pulsed as depicted below. The total current is about 10 nA. This comes out to be about 120 electrons in each 'bucket.'

With a radiator of 10^{-5} rad. len., we expect an e⁻ to interact with a Au nucleus once every 1000 buckets (every 2 μ s). Using the timing of the beam, we can get about 300 ps resolution in the start and time-of-flight counters.

J. Goetz

Photoproduction of Ξ's JLab and CLAS Detector Master Trigger & Skims

DAQ and Event Reconstruction

The data acquisition system is capable of storing \sim 8k events/sec. Typical raw data storage is 1 TB/day, and our experiment (g12) is scheduled for 64 days.

The tracks can be reconstructed and shown individually as seen at right.

Figure: A reconstructed event in the CLAS detector showing six tracks in one of the three planes. This event is of the form: $\gamma p \rightarrow K^+K^+\Xi^- \rightarrow \pi^-\Lambda \rightarrow p\pi^-$. The four darker tracks are K⁺, K⁺, p, and π^- .

Master Trigger for Events

The master trigger for g12 will require two charged tracks. (though, the actual master trigger is not set in stone yet)

For analysis of the reactions $\gamma p \rightarrow K^+K^+\Xi^{-*}$ we will make a loose cut on the kaon masses and require two of them.

Each kaon brings the data set down to about 10% of the original size.

Further initial cuts include:

- limits on coincidence of the photon time to the electron at the tagger
- minimum photon energy
- vertex cuts along the beam axis

くぼう くほう くほう

Calibration Previous Analysis

Particle Identification

Figure: Particle identification is done by looking at charge first, then assigning each particle as a possible candidate for one of: pion, kaon, proton, or deuteron depending on the calculated mass (found from momentum and speed as depicted to the right. Shown is the g6 data.)

previous results - g11

This is the g11 data with only the cuts described on the previous slide. Missing mass (M_X) of the reaction: $\gamma p \rightarrow K^+K^+X$.

Detached Vertexes

Figure: Again: Ξ^{*-} photoproduction via intermediate Y^{*} decay. This time, consider where the vertexes around the Ξ 's will be. The Ξ^- and Λ have lifetimes of a couple of cm. This will make it possible to get strangeness without requiring the kaons and will help to suppress the random background.

Part III

Other Work

2

- 4 回 > - 4 回 > - 4 回 >

Nefkens Computer Cluster at UCLA

Figure: Computing cluster in Knudsen Hall, UCLA.

< E

Nefkens Computer Cluster at UCLA

There are five major parts to the entire Computing Cluster.

- Queue-based computing farm
- Hard drive array
- Tape library system
- User workstations
- back-up system

Figure: The layout of these systems.

(日)