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Cascade Hyperons and the g12 Experiment
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g12 Kaon Data

The Strong Force
Cascades (Ξ)
Photoproduction of Ξ’s

The Forces of Nature

Four known forces: gravitational, electromagnetic, weak, strong

The gravitational force is always attractive

The electromagnetic force can be attractive or repulsive

The weak force is responsible for neutrino interaction

The strong force is either attractive or repulsive depending on the
range of the particles (quarks)
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The Strong Force
Cascades (Ξ)
Photoproduction of Ξ’s

The Forces of Nature

Four known forces: gravitational, electromagnetic, weak, strong

The gravitational force is always attractive

The electromagnetic force can be attractive or repulsive

The weak force is responsible for neutrino interaction

The strong force is either attractive or repulsive depending on the
range of the particles (quarks)

To complicate matters, the particles that interact via the strong force are
only found in specific combinations and are never isolated
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g12 Kaon Data

The Strong Force
Cascades (Ξ)
Photoproduction of Ξ’s

Baryons and the Cascades

The strong force is what binds
the three quarks inside the
proton

There are six flavors of quarks

This study involves only the
lightest three

Ξ States are identified by the
quantum numbers:

Baryon = 1

Strangeness = −2

Q ∈ {−1, 0}
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The Strong Force
Cascades (Ξ)
Photoproduction of Ξ’s

Baryons and the Cascades

In order to study the strong interaction, we look at qqq systems with two
strange quarks. They are narrow and SU(3) symmetry suggests a 1:1
correspondence between the Xi spectrum and N/∆’s
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g12 Kaon Data

The Strong Force
Cascades (Ξ)
Photoproduction of Ξ’s

Previous Investigations

virtually all evidence for Ξ∗ states come from measuring the decay
particles directly in hadron-production experiments such as:

K−p→ Ξ−K+

Σ−p→ Ξ0pK+

photoproduction provides another way to measure the cascades:

γp→ Ξ−K+K+
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The Strong Force
Cascades (Ξ)
Photoproduction of Ξ’s

Photoproduction of Ξ’s

Allows the cascade to be identified by the photon and two K+’s

There are a few requirements to
this avenue of investigation

photon (beam) energy
measurement

four-momenta of the two K+’s

sufficient acceptance for the
kaons

understanding of sources of
background

γ

p

K+

K+

Ξ−
Y∗

K+

The CLAS detector at JLab satisfies these requirements
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The CLAS Detector
g12 Data and Reconstruction

The CLAS Detector

JLab from the air
The CLAS Detector (upstream)
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The CLAS Detector
g12 Data and Reconstruction

The CLAS Detector Components

six sectors — three ‘planes’

radiator & electron tagger

ℓH2 or ℓD2 target (others are possible)

start counter (scintillator)

magnets (toroidal)

drift chambers (3x per sector)

Čerenkov Detectors

Time of Flight Detectors

Electromagnetic Calorimeter
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g12 Kaon Data

The CLAS Detector
g12 Data and Reconstruction

g12 Acquired Statistics

Commissioning and Data taken over 70 calendar days
April 1th – June 9th, 2008

Production Data

44.2 days active DAQ
∼63% of calendar time
Beam Current: 65 nA
DAQ rate ∼8 kHz
26.2 G triggers (events)

Size of Raw Data: 126 TB

Reconstruction Expands this by a
factor of 2.5

“cooked” data > 300 TB
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g12 Kaon Data

The CLAS Detector
g12 Data and Reconstruction

Calibration and Reconstruction

Primary Calibrators

C. Bookwalter, FSU (TOF)

P. Eugenio, PhD., FSU (coord)

J. Goetz, UCLA (recons.)

L. Guo, PhD., FIU (coord)

V. Kubarovsky, PhD., JLab (coord)

M. Paolone, PhD., USC (EC, CC)

J. Price, PhD., CSUDH (coord)

M. Saini, FSU (RF, ST, TAG)

D. Schott, FIU (DC)

B. Stokes, PhD., GWU (DC)

A. Vlassov, PhD., JLab (CC)

D. Weygand, PhD., JLab (coord)

M. Wood, PhD., Canisius (EC)

Calibration of the g12 data took
this team a year and three months.

My specific role was to ensure
the reconstruction of tracks
(four-vectors) from the raw
data was done correctly and
efficiently

This involved debugging several

programs which were developed over two

decades by approx. two dozen people

using a mix of FORTRAN, C, C++, and

various scripting languages
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g12 Kaon Data

The CLAS Detector
g12 Data and Reconstruction

Reconstruction - Algorithm

Raw or Calculated Data

Calibration Data

Calculation

< 1.0 %

1-2x

I developed this flowchart of
the reconstruction algorithm
and the corresponding expansions for

tracking in the dissertation

There have been other
studies of the reconstruction
algorithm used by CLAS,
but this is the first I know
of that obtained the relative
processing time for each
step.
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g12 Kaon Data

The CLAS Detector
g12 Data and Reconstruction

Reconstruction - Timeline

The reconstruction of raw data to an analysis-ready “cooked” version
took four months using the computing farm at JLab.

Sept: higher priority

Oct: increased cache

Nov & Dec: more
CPUs
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g12 Kaon Data

The CLAS Detector
g12 Data and Reconstruction

Analysis Framework

The single-kaon skim we initially made on the data consisted of 30% of
the cooked data (about 100 TB)

This made it very difficult to read through quickly.

I developed my own variably-sized
ntuple using the Serialization
library from the BOOST project in
C++

this effectively converted the
cooked data to zipped ASCII
files

resulting single kaon data
(from 90 TB) was 1.6 TB

The 1.6 TB can be analyzed in
about 1.5 days using our own farm
(next door)
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Motivation
The g12 Experiment

g12 Kaon Data

The CLAS Detector
g12 Data and Reconstruction

Analysis Framework

The single-kaon skim we initially made on the data consisted of 30% of
the cooked data (about 100 TB)

This made it very difficult to read through quickly.

I developed my own variably-sized
ntuple using the Serialization
library from the BOOST project in
C++

this effectively converted the
cooked data to zipped ASCII
files

resulting single kaon data
(from 90 TB) was 1.6 TB

From this ntuple, I produced all the
original histograms shown in the
dissertation. Some images were
produced with ROOT and others
with the Scientific Python (SciPy)
and “Matplotlib” packages.

J. Goetz Cascade Photoproduction PhD Defense



Motivation
The g12 Experiment
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Missing Mass Technique
Missing Mass off K

+
K

+

Sources of Background

Missing Mass Technique

γp→ K+K+X−

since we wish to use the missing mass technique, we must first
determine its accuracy by looking at known states.

For kaon data, we will start with singly strange baryons (Σ’s and Λ’s)

Note that these data were calibrated mostly with exclusive pion
events: γp→ pπ+

π
−
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Missing Mass Technique
Missing Mass off K

+
K

+

Sources of Background

MM(K+)

γp→ K+X 0

Measured Masses (MeV)

Λ = 1109.4± 0.25

PDG = 1116

Σ0 = 1186.6± 0.4

PDG = 1192

Σ∗0 = 1385± 7

PDG = 1384

PDG: Λ∗(1405)

Λ∗ = 1518± 3

PDG = 1520

Entries  706992
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Missing Mass Technique
Missing Mass off K

+
K

+

Sources of Background

M(K+
K
−)

γp→ ϕX+

(ϕ→ K+K−)

Entries  8135740
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ϕ = 1019.5± 0.2

PDG = 1019
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Missing Mass Technique
Missing Mass off K

+
K

+

Sources of Background

MM(K+
K

+
π
−)

γp→ K+K+
π
−X 0

Λ = 1113.2± 0.5

PDG = 1116

Ξ0 = 1313.8± 0.4

PDG = 1315

secondary peaks from
misidentified pions and
where the π− is
associated with the
decay of the X 0
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Missing Mass Technique
Missing Mass off K

+
K

+

Sources of Background

MM(K+
π

+
π
−
π
−)

γp→ K0K+
π
−X+

(K0 → π+
π
−)

p = 937± 1

PDG = 938

Σ+ = 1186.8± 1.8

PDG = 1189

secondary peaks will be
revisited in the search
of iso-exotics
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Missing Mass Technique
Missing Mass off K
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MM(K+
K

+)

γp→ K+K+X−

basic timing and vertex
selections only

Ξ− = 1320.2± 0.2 MeV

PDG = 1321.71± 0.07

Ξ∗− = 1535.2± 0.8 MeV

PDG = 1535.0± 0.6

misidentified pion events
show up as vertical bands
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g12 Kaon Data

Missing Mass Technique
Missing Mass off K

+
K

+

Sources of Background

TOF Energy Deposit Cut

kaons identified from
ϕ(1020) and Ξ−(1320)
signals

number of kaons, pions
and protons were
normalized in this to
bring out the kaon
band

this cut was used as a
consistency check of
the particle ID which
was based on timing
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g12 Kaon Data

Missing Mass Technique
Missing Mass off K

+
K

+

Sources of Background

Proton Cut

proton can be used to remove the Σ−(1189) events:
γp→ Σ−K+

π
+

Σ− → nπ− (99.8%)

affects Σ∗− events differently from Ξ∗− events
since the Ξ∗−’s are more likely to decay to a proton

Because the reductions in the Ξ signals and the Σ∗− background are
different, this is a direct test of the measurements of the events in
the peaks
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Missing Mass Technique
Missing Mass off K
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Sources of Background

Primary Event Selections

γp→ K+K+X−
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Proton
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70% of basic cuts
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Proton
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22% of basic cuts
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25% of basic cuts
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Missing Mass Technique
Missing Mass off K

+
K

+

Sources of Background

Sources of Background

Two types of background sources in MM(K+K+) distribution

Inefficiencies

misidentified particles (pions
are ID’d as kaons)

Σ∗− states contributed
through this and is the largest
source of background in this
analysis

wrong beam energy from the
tagger

Competing Physics

Possibility of many high-mass,
broad Ξ∗− states

Y∗ pion emission (soft π0’s)

neutral kaon channels such as:
γp→ Y∗K+

Y∗ → Ξ∗0K∗0

K∗0 → K+
π
−
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Search for Iso-Exotics
Conclusions

Calculation Technique
Simulations and Acceptance
Ξ Yields and Excitation Functions

Excitation Function

The Excitation function is the absolute probability that a specific will be
produced at a certain center-of-mass energy
(we use Ebeam since the proton is at rest)

Ingredients

Measured Yield (N) primary source of statistical error

Flux (F ) a moderate source of systematic error, but the large
number of photons hitting the target means the statistical
error is at a minimum

Target Material (w , ρ, ℓ) well known

Acceptance, (A) primary source of systematic error

σ = w

ρℓNA

N

AF
ulimit
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Ξ Excitation Functions
Search for Higher Mass Ξ∗

Search for Iso-Exotics
Conclusions

Calculation Technique
Simulations and Acceptance
Ξ Yields and Excitation Functions

Model Dependence and Systematic Uncertainty

The model used to simulate Ξ events is the largest source of systematic
uncertainty.

The model used was a
t-channel production of a Y∗

which then decayed by
phase-space to the Ξ

The major parameters we
adjusted to get good
agreement with the kaon
distributions seen in the data
were:

t-slope of the leading K
+

mass of the Y∗

width of the Y∗

γ

p

K+

K+

Ξ−
Y∗

K+
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Ξ Yields and Excitation Functions

Model Dependence and Systematic Uncertainty

The model used to simulate Ξ events is the largest source of systematic
uncertainty.

The model used was a
t-channel production of a Y∗

which then decayed by
phase-space to the Ξ

The major parameters we
adjusted to get good
agreement with the kaon
distributions seen in the data
were:

t-slope of the leading K
+

mass of the Y∗

width of the Y∗
(Similarly for Y∗ mass and width)
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Ξ Yields and Excitation Functions

Simulation Comparison to Data
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Calculation Technique
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Acceptance

The acceptance for the ground state and first excited Ξ− states. The
statistical error is within the size of the dots and the systematic error is

estimated to be ≈ 10%

Ξ−(1320)
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Extracting Yields from the Data

3rd order polynomial

Gaussian peak

yield is the integral of the
histogram minus the integral
of the polynomial part of the
total fit.

There is a systematic
uncertainty in this fit
The shape of the background is not
known, but only approximated by the
low-order polynomial

The proton cut gives us a handle on the
systematics of this fit indirectly
(discussed later)

Ξ
−(1320) fit, full statistics
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Ξ Measured Yields

measured yield of the ground state and first excited state Ξ− show
structures in acceptance and efficiency of the CLAS detector

Ξ
−(1320)

Notice: absence of events at 3 GeV due to bad
tagger timing paddle, increases at 3.6 and
4.4 GeV due to trigger configuration
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Correcting for the Flux

measured yield of the ground state and first excited state Ξ− show
structures in acceptance and efficiency of the CLAS detector

Photon Flux
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Correcting for the Flux

measured yield of the ground state and first excited state Ξ− show
structures in acceptance and efficiency of the CLAS detector

Ξ−(1320)

This includes the target material corrections
and is the closest we can get to the final
excitation function before we introduce any
model
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Ξ Excitation Functions

Total cross section of γp→ Ξ−K+K+
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Comparison to Previous Experiments with CLAS

γp→ Ξ−K+K+

Total cross section
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Comparison to Theoretical Work

γp→ Ξ−K+K+

Total cross section

K. Nakayama, Yongseok Oh
and H. Haberzettl

Overall scaling factor in prediction was adjusted to g11 data
(overlayed points on right)
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Sensitivity of Yield Measurement

Upper Limit Calculation same as that for Excitation Function xfn calc

Differences:

Instead of yield, we have the sensitivity to measured yield
dependent on the width searched for (25-30 was used for the Ξ

∗)
acceptance - similar to Xi(1530)
can’t adjust simulation parameters to a signal since there is none!

yield sensitivity was defined as the two standard deviation of the error
from the yield measurement which was verified to be consistent with zero
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Missing Mass off K
+

K
+ Revisited

The proton and the TOF energy deposit cuts were employed in obtaining
the upper limits for the Ξ∗ states at 1620, 1690 and 1820 MeV
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Total cross section upper limits for the Ξ∗ states at:
1620, 1690 and 1820 MeV

Yield Upper Limits
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Ξ
∗ Upper Limits

Total cross section upper limits for the Ξ∗ states at:
1620, 1690 and 1820 MeV

integrated over 3.5–5.4 GeV
CL = 90%

Ξ−(1620): 0.78 nb

Ξ−(1690): 0.97 nb

Ξ−(1820): 1.09 nb
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Iso-exotic photoproduction

no reliable model for photoproduction of these states

no reliable masses or widths as well

qualitative search for narrow resonances

depending on the width of these states, the estimated total cross
section upper limit are 10–100 nb since statistics are comparable to
the search for Ξ∗− data

only strong decays of the resonances were considered so that definite
strangeness could be identified
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Summary

higher mass Y∗’s contribute to Ξ production at higher CM energies

photoproduction total cross sections for the Ξ∗− states above
1530 MeV are smaller than anticipated (no higher than 2 nb)

This is consistent with the “vector meson dominance” model of the
photon (see Fig. 17 on page 20 of dissertation) where the
production ratio means we expect 75 events for the Ξ∗−(1690) in
g12 — we are only sensitive to about 250 events

above comparison breaks down due to the difference in beams:
Σ− beam vs. γ beam

but it is the only type of measurement available

no evidence for iso-exotic baryons of strangeness −1 or −2
(estimated sensitivity ≈ 10–100 nb)
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Possible Future Work

Ξ− and Ξ∗− differential cross section measurement
(requires work on the simulation model used)

Ξ0 differential and total cross section (neutral kaon channel)

Ω− photoproduction (never seen!)

mapping out accurate upper limits for the iso-exotics as functions of
mass and width
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Ξ(1530) : Ξ(1690) ratio in kaon production

Invariant mass of Ξ−π+

using the Σ− beam at
CERN from Adamovich
et al., 1997

this measured ratio
equates to ≥ 75
Ξ(1690) events in g12
data
only experimental evidence that
a factor of 10 more statistics
would be enough to observe the
Ξ(1690)
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Keep this plot?

found in g12 proposal (a CLAS internal report)
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