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Precession and Decay of µ Leptons in Copper
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The mean lifetime of µ+ leptons is measured as well as the mean lifetime of µ− leptons in copper.
With a uniform magnetic field inside the copper, the precession rate of the µ+ particles are measured
which allows the value of Dirac’s g-factor to be calculated experimentally. The mean lifetime of the
µ+ lepton is found to be 2180± 27 ns, the µ− lifetime in copper is found to be 170± 16 ns, and the
calculated value of g is 2.0± 0.1.

PACS numbers: 14.60.Ef, 13.35.Bv

I. INTRODUCTION: COSMIC RAYS TO µ
LEPTONS

High energy photons from the interstellar medium are
constantly bombarding the Earth. These so called cos-
mic rays, as well as high energy protons, collide with
molecules in the upper atmosphere producing showers
of π mesons. These π mesons have a mean lifetime of
2.6× 10−8 seconds and decay quickly to µ leptons as di-
agrammed in Fig. 1. Both positive and negative muons
are produced which have a mean lifetime of 2.197× 10−6

seconds[10] in a vacuum. This is long enough so that the
relativistic muons are able to travel from the upper at-
mosphere to sea level before decaying[5]. The principal
decay mode for the muon is an electron or positron, a
neutrino, and an anti-neutrino[10] as shown in Fig. 2 for
a positive muon.

A. µ− capture in Copper

The µ− particle has the property that it can be ab-
sorbed in a conductive medium. This process is known
as muon capture[5] and is shown in Fig. 3. Here, the neg-
ative muon is trapped by the Coulomb attraction of the
proton and the muon begins to orbit the nucleus. How-
ever, the mass of the muon is approximately 200 times
the electron and therefore the radius of the orbit is much
smaller and the muon gets captured by a proton in the
nucleus. The weak interaction produces a neutrino and
a neutron.

The rate of decay of any particle is the sum of the
rates of the different modes available to it. For example,
a particle which has three modes of decay R1, R2, and
R3, will have a total decay rate given by the following

FIG. 1: Feynman diagram of a π+ decaying via a weak inter-
action to a µ+ and a µ-neutrino.

FIG. 2: Feynman diagram of a µ+ lepton decaying weakly to
a positron, electron-neutrino, and an anti-muon-neutrino.
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FIG. 3: Feynman diagram of µ− capture.

equation.

Rtot = R1 + R2 + R3 (1)

Since the µ+ is not subject to capture and there are no
other significant decay modes, its mean lifetime, which is
the inverse of the rate of decay, remains the known value
2197 ns. With the possibility of absorption, the µ− has
two significant decay modes. The mean lifetime of the
µ− is found by

Rtotal = Rdecay + Rabsorption (2)

where Rabsorption is the rate of µ− capture in copper,
Rdecay is the decay rate of µ leptons in a vacuum, and
Rtotal is the decay rate of the µ− in copper. Notice that
in Eqn. 2, R = 1

τ where τ is the mean lifetime of a
particle with a decay rate of R. Substituting the values
of the mean lifetime for the µ leptons, we can solve for
the absorption rate.

Rabsorption =
1

τµ−
− 1

τµ+
(3)

Here, τ− is the mean lifetime of µ− in copper and τµ+ is
the mean lifetime of the µ lepton in a vacuum.
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B. Precession of µ leptons in magnetic field

The muon has an intrinsic spin 1
2 which produces a

magnetic moment. In a uniform magnetic field, this mag-
netic moment precesses about the direction of the field.
The frequency is given by the following equation:

ω =
geB

2mµc
(4)

In this experiment, we create a uniform magnetic field
using a solenoid of copper wiring. The magnetic field is
given as:

B = µ0nI. (5)

To work in cgs units, Eqn. 5 can be found in terms of the
current through the wires.

B (gauss) = 104 gauss
tesla 4π × 10−7 tesla·m

amp

× 695.3 turns
m I (amp) (6)

Also, the factor e/2mµc can be expressed as one number
with the units of gauss× sec−1.

e

2mµc
=

2.55× 1015 statcoul
g

2
(
2.9979× 1010 cm

sec

)

= 4.253× 104 1
gauss·sec (7)

If we then set I = 3.71 ± 0.01 amps—which is the cur-
rent used in this experiment—and solve for g, we get
an expression to obtain the g-factor from the precession
frequency in radians per nanosecond:

g = (725 ns) ω. (8)

The current I in Eqn. 6 contains the only significant con-
tribution to the error of the factor 725 in Eqn. 8. The
error of this factor is found to be ≈ 1

2%. We note that
the error on ω is approximately 10% while the error in
the factor is less than 1% so the factor of 725 is taken
without error in Eqn. 8.

II. EXPERIMENT: DESCRIPTION OF
APPARATUS

The physical detector as shown in Fig. 4 consists of the
following main parts:

• Scintillators and PMTs

• Iron Filter

• Copper Target

• TDC and NIM modules

• Computer and Crate

FIG. 4: Physical experimental setup. The scintillators are
numbered C1–C5 which are connected to PMTs 1–5 in that
order. The start signal is 1 ⊗ 2 ⊗ 3 ⊗ 4. The stop signal is
1⊗2⊗3⊗4 for an upward event and 1⊗3⊗4⊗5 for a downward
event. The iron filter which is 3

4
inches thick is labeled Fe,

and copper target which is 3
4

inches thick is labeled Cu. An
example of an entering muon which subsequently decays to
an upward traveling electron is shown.

Each scintillator is connected to a photomultiplier tube
(PMT). When a lepton passes through the scintillator, it
releases photons which are amplified by a PMT into an
electric signal that travels to the discriminators where it
is appropriately handled by the logic as seen in Fig. 6.
The iron filter has been chosen of a density and thick-
ness such that a muon must have a momentum of at
least 240 MeV/c in order to pass through the filter to-
ward the copper target. The copper target has also been
carefully chosen to have a density and thickness such
that muons with momentum greater than 270 MeV/c
will pass straight through and not be stopped by the tar-
get. Therefore, each muon absorbed by the copper target
must have momentum[9]:

240MeV/c ≤ pµ ≤ 270MeV/c (9)

A. Testing and adjusting the PMTs

When applying voltage to the PMTs, in this case at
approximately -1.2 kV to -1.6 kV, spontaneous discharges
will sporadically occur and will show up as signals in dis-
criminator A. The more negative we set the high voltage
setting on a PMT, the greater the magnitude of the gain
of that PMT. A larger PMT voltage setting corresponds
to a larger signal being sent to discriminator A when a
muon passes through the scintillator. We do not want
to set the PMT voltages too high however, because this
increases the likelihood that a series of spontaneous dis-
charges arriving at discriminator A will be mistaken for a
muon. For each tube, we take a series of data and plot it
as shown in Fig. 5. For the fifth PMT in Fig. 5, we want
the efficiency 2⊗3⊗5

2⊗3 as high as possible without raising
the voltage setting as to generate an unreasonably high
level of noise. For this PMT, we chose a voltage setting
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FIG. 5: Efficiency of 2⊗3⊗5
2⊗3

vs. voltage setting which corre-
sponds to the fifth PMT.

TABLE I: Data for plateau histogram in Fig. 5.

PMT setting (-kV) 2⊗ 3⊗ 5 2⊗ 3 2⊗3⊗5
2⊗3

1.405 488 1005 0.49
1.421 515 998 0.52
1.431 573 1003 0.57
1.440 630 1003 0.63
1.450 652 1001 0.65
1.460 662 998 0.66
1.470 693 1006 0.69
1.480 701 998 0.70
1.500 718 998 0.72
1.510 703 1000 0.70

of -1.48 kV. Similar plots for the other four PMTs may
be found in our lab notebook held in the 180F labora-
tory file cabinet. The settings for all five tubes are shown
in Tab. II. PMTs 2, 3 and 4 were each plateaued with
1⊗2⊗3
1⊗3 , 1⊗3⊗4

1⊗4 , and 1⊗3⊗4
1⊗3 against the voltage settings

respectively, yielding efficiencies of at least 90 percent.
PMTs 1 and 5 had lower efficiencies because we plateaued
them relative to PMTs 2, 3, and 4. However, PMTs 2,
3, and 4 are the most critical in this experiment because
they are most used by the TDC stop signals and there-
fore deserve the highest efficiency. It is difficult to get all
five PMTs simultaneously plateaued to the highest pos-
sible efficiencies in a short time because each efficiency
depends on the voltage settings of each other PMT. To
this extent, we saved a great deal of time by setting the
most critical PMTs first to high efficiencies while sacri-
ficing some efficiency on the less critical PMTs.

TABLE II: Voltage settings for all 5 PMTs.

PMT Threshold (-kV)
1 1.46
2 1.40
3 1.40
4 1.40
5 1.48

TABLE III: Threshold settings for the LRS 4608 discrimina-
tors in the first stage, A, and the second, B.

Threshold settings
PMT No. Discr A Discr B

C1 -0.037 -0.099
C2 -0.038 -0.117
C3 -0.039 -0.097
C4 -0.040 -0.099
C5 -0.037 -0.097

B. Logic setup for µ lepton decay

The information collected by the PMTs must be re-
routed to the correct inputs of the TDC by the logic
setup[1] as depicted in Fig. 6. The logic setup consists of
the following components:

• 10 Discriminators

• 5 Coincidence Units (AND gates)

• 2 Gate Generators

• 27 LEMO Cables of various lengths

The initial signals sent by the 5 PMTs are sent to the
first set of 5 discriminators where they signal are con-
verted to 60 ns NIM signals of amplitude -0.7 V. The
second set of 5 discriminators convert the received 60 ns
signals to 15 ns signals.

The next stage in our logic is a set of 3 coincidence
units. The first coincidence unit has inputs 1⊗ 2⊗ 3⊗ 4.
This unit starts the TDC and the two gate generators.
The second coincidence unit has inputs 1⊗ 2⊗ 3⊗ 4 and
sends a stop signal to the TDC’s first channel to indicate
an upward decay. The third unit has inputs 1⊗ 3⊗ 4⊗ 5
and sends a stop signal to the TDC’s second channel to
indicate a downward decay. Signals of different widths
enter these three coincidence units. The veto inputs are
of 60 ns width and the signals from discriminator B are
of 15 ns width. We adjusted the lengths of the LEMO
cables carrying 15 ns signals out of discriminator B to
delay them such that they were centered about the 60 ns
signals coming out of discriminator A. Fig. 7 depicts what
we see on the oscilloscope while looking at the inputs
to the decay up coincidence module when we adjust the
timing in the lab.

The fourth stage is a set of two gate generators. When
a signal is received at this step, the receiving module
generates a 20 µs signal. The fifth stage consists of two
AND gates which require that the stop signals coming
from the 3rd coincidence units are only sent to the TDC
if the gate signal from module 4 is open.

C. Data acquisition

The logic routes the signals from the PMTs appropri-
ately so that decay up and decay down events are cor-



4

FIG. 6: Logic setup from the inputs of the first discriminators to the TDC. Chanel one corresponds to upward events and
channel 2 corresponds to downward events.

FIG. 7: Input signals to the decay down coincidence unit in
the third stage of our logic as seen in Fig. 6. The signal width
for Discr A is 60 ns while that for B is 15 ns. A diagram of
the discriminator unit is shown below.

rectly timed by the TDC. The information collected by
the TDC, however, must still be input to a computer
for numerical analysis. This is done via the crate and
the CAMAC controller as seen in Fig. 8. There are two
parts to the CAMAC. The Crate Controller is plugged
into the crate where it receives raw data from the TDC
through the crate. The second part of the CAMAC is
the interpretor. The interpretor consists of a card that
fits into an ISA (Industry Standard Architecture) 16-bit
slot of a standard IBM-compatible computer. Accompa-
nying this card is a driver from the manufacturer of the
card along with a set of functions that can be used by
a computer programmer to read data from the CAMAC
controller. This interpretor is connected to the controller
via a parallel in-line communication cable.

1. BASIC acquisition program

The Computer receives data from the TDCs through
the interpretor of the CAMAC controller. We updated
a previously written[3] BASIC data acquisition program.
The skeleton of this program is shown below. In this
program the variables D%(1) and D%(2) correspond to
data read from the first and second channels in our 8
channel TDC module. The TDC counts every 20 ns:
this is the bin size. In our set up, D%(1) corresponds to
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FIG. 8: Data Acquisition

the number of bins counted before the decay up signal
stopped the TDC. Thus

time(decay up event) = 20× D%(1) ns (10)

The 3rd argument to the function CAMI seen in the skele-
ton of our DAQ program is the number (1–8) of the TDC
in the module from which you want to read data. An en-
try of zero checks to see if there are any -1 entries in the
vector whose 8 components each hold the bin counts for
one of the TDCs [4]. We cut in the program all data of
greater than 2048 bins before it is even written to a file
because when we analyze the data, our fit will never need
to go beyond 20,000 ns.

’**Begin DAQ Main Loop************************
PRINT "KEY F1 WILL INTERRUPT DAQ"
510 ON KEY(1) GOSUB 150

KEY(1) ON
CALL CAMI(S%,8,0,DT%(0),Q%,X%)

’**Check LAM signal from crate
IF Q% = 0 THEN 510
GOSUB 4100: ’Read data

’**Drop event if D%(1) or D%(2) overflow
if D%(1)<0 and D%(2)<0 GOTO 510
GOSUB 4000: ’Print event to screen
GOSUB 4200: ’Print event to file
GOTO 510

900 END

’**Read Ch1 and 2 data from TDC***************
4100 FOR I = 1 TO 2

A% = I - 1
IF A% < 1 THEN 4102

’**Calls the CAMI function to retrieve data
’**from the crate modules

CALL CAMI(S%,2,A%,DT%(0),Q%,X%)
GOTO 4105

’**Calls the CAMI function to initialize
’**data transfer from the crate modules
4102 CALL CAMI(S%,0,A%,DT%(0),Q%,X%)
’**If event did not time out - record it
4105 IF DT%(0) << 2048 THEN 4108

D%(I) = -1
GOTO 4109

’**normalize bin number to time (nanosec)
4108 D%(I) = DT%(0)*20
’**increment the number of either up
’**or down events

IF D%(1) > 0 THEN
up% = up% + 1

ELSE
down% = down% + 1

END IF
4109 NEXT I
RETURN

D. Measuring t = t0

Referring to our logic diagram in Fig. 6 we see that
the start signal travels to the TDC directly from the
first AND gate of the third stage. But the stop signals
must each travel through a gate generator and and addi-
tional coincidence unit before reaching the TDC. There
is an inherent delay that the stop signal encounters be-
fore reaching the TDC and this delay measured as t = t0
and accounted for in each measurement of our analysis.

To do this we change the start signal from 1⊗2⊗3⊗4
to 1⊗ 3⊗ 5. This will now start the TDC for a muon of
momentum p ≥ 270 MeV/c that travels straight through
the copper target without being absorbed. The benefit
of this is that a ”straight through” muon will also trig-
ger both of the TDC stop signals from the second two
coincidence units in step 3. The start and stop signals
leave step 3 at the same time. We would have expected
to measure t = 0 for each straight through event if there
was no delay between the start and stop signals. How-
ever, we find a non-zero measurement as anticipated. We
want this measurement to be in the center of a bin. We
adjusted the lengths of our LEMO cables between steps
4 and 5 so that our t0 would be as close as possible to
30.0 ns, which is exactly in the center of the second bin.

After taking data under these conditions for 7 minutes
and 46 seconds, we accumulated 1412 up hits and 1389
down straight-through hits. We observed that these hits
fell into one of the first three 20 nanosecond bins, which
run from 0-20, 20-40, and 40-60 nanoseconds. When plot-
ted into a histogram, with the bins on the x-axis and the
number of counts on the y-axis, as shown in Fig. 9, we
saw that the distributions for up and down hits were
both heavily centered about the second bin. This his-
togram was fitted with a Gaussian curve, and the mean
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FIG. 9: Zero timing histogram of 1⊗3⊗5 on the first and sec-
ond channels of the TDC, which correspond to up and down
events respectively. The Gaussian fit facilitates a measure-
ment of the error in any measurement of time in our experi-
ment. This is done by setting σt to the standard deviation of
the fit.

was found to be:

t0 = 30± 9 ns (11)

The error propagation involving statistical errors in the
mean and sigma as given by ROOT was dominated by
the σ = 9 term. Thus we concluded that the times of
each data entry in the rest of our experiment must have
30 ns subtracted from them in order to correct for the
delay in the path taken by the TDC stop signals. Also,
the timing values produced by the fits must have an error
correction due to the σt as discussed in Sec. IIID.

E. Measuring noise

In order to procure some type of understanding con-
cerning the amount of background we were accumulating
in our runs, we performed a series of target out runs, in
which the target was swung out of the apparatus and no
changes were made to our original logic. There are two
types of noise associated with our results:

i After registering a stopping muon signal, a charged
particle may conceivably approach the detection
apparatus at an extremely oblique angle, hitting
2 ⊗ 3 or 4 ⊗ 5 only. These types of hits would be
falsely logged as up or down decays, respectively.
Since there is no correlation between any of the
events that contribute to this false entry, we would
expect this to be a flat distribution of noise, neces-
sitating an added constant in our fitting equation.

ii On occasion, it is possible for a µ-particle to stop in
scintillator 3, and cause a start signal, because it is
still consistent with our 1⊗ 2⊗ 3⊗ 4 trigger. Upon
its decay, it will register as an up or down hit. We
would expect this type of event to necessitate an

exponential term in our fitting equation, since it is
in fact a representation of µ-lifetimes.

There is a third type of noise possible, in which a
muon stops so close to the surface of scintillator 4 as
to not generate a signal, and upon its downward decay,
it creates a down stopping signature. As discovered in a
Monte Carlo Simulation[2], the occurrence of such events
is rare enough as to dismiss their contributions to our his-
tograms.

Here, it is important to note that although both the up
and down target-out runs will display a superposition of
exponential decay and a flat distribution of noise, when
the target is in, all downward propagating µ decays from
scintillator 3 will be stopped in the copper target. There-
fore, the down target-out data is irrelevant to the rest of
our results.

F. µ lepton precession in a magnetic field

Turning on the current in the coils surrounding the
copper target, a uniform B-field will run through the
target parallel to its axis. The current was chosen to
be 3.71± 0.01 Amperes. Using the standard formula for
the magnetic field in a solenoid as given in Eqn. 5 we find
that the magnetic field in the solenoid is approximately
32.4 ± 0.1 Gauss. We kept a cooling fan on the copper
coils whenever current was running through them. This
keeps the temperature of the coils, and therefore their re-
sistance, approximately constant. Using the formula for
the Larmor precession of a muon in a constant magnetic
field as given in Eqn. 4, and setting g = 2, we should
expect a precession rate of 0.000276 radians per nanosec-
ond.

III. ANALYSIS TECHNIQUES

To analyze the data and obtain values for the mean
lifetimes of the µ leptons as well as Dirac’s g-factor, a
series of exponential fits were applied to a number of
histograms. In particular, the method starts with a zero-
timing determination. Then, for the target-in runs, the
measured noise was taken into account before being fitted
with the appropriate equation. Finally, the target-in data
with the magnetic field on is analyzed via a sinusoidal
function which produces the rate of precession.

A. Adjusting for noise

In order to adjust for noise as described in Sec. II E,
we fit our target out data to Eqn. 12 as seen in Fig. 10
and Tbl. IV.

f(t) = A′ exp
( −t

τnoise

)
+ B′ exp

( −t

τµ+

)
+ C ′ (12)
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TABLE IV: Ranges of parameters in target out data analysis
fit as seen in Eqn. 12 to give Eqn. 22. Each term was fit
from tmin to tmax using ROOT. Then, the whole equation
was fit over the entire range, [100, 20000], and was fixed or
was allowed to vary.

Variable tmin tmax [100, 20000] fit Value
A′ 100 20000 variable 76± 2

τnoise 100 20000 variable 1700± 200
B′ 100 20000 variable 265± 6
τµ+ 100 20000 fixed 2197
C′ 13000 20000 fixed 9.8± 0.4

Fixing τµ+ , which is the mean lifetime of the µ lepton
in a vacuum, we let Root’s MINUIT analysis program fit
the remaining variables so as to get values for τnoise and
A′.

B. Fitting µ+ and µ− decays

The histogram for µ lepton decay shown in Fig. 11 was
fitted with the sum of three exponentials and a constant,
corresponding to µ+ lifetime in copper, τnoise, µ− lifetime
in copper, and a flat distribution of noise throughout.

f(t) = A exp
( −t

τµ−

)

+ B exp
( −t

τµ+

)

+ C exp
( −t

τnoise

)
+ D (13)

In order to minimize χ2, and to fit over ranges appro-
priate to which each term corresponds, the first term of
the above function was fitted on the range t ∈ [100, 600],
the second on t ∈ [100, 5000], the fourth throughout t ∈
[100, 20000], the and the constant over t ∈ [15000, 20000].
Refer to Tab. V for further clarification.

TABLE V: Ranges of parameters in target-in data analysis fit
as seen in Eqn. 13 to give Eqn. 23. Each was term fit from tmin

to tmax using ROOT. Then, the whole equation was fit over
the entire range, [100, 20000], and was fixed or was allowed
to vary.

term tmin tmax [100, 20000] fit value
A 100 4000 variable 626± 1

τµ− 100 4000 variable 170± 13
B 100 4000 variable 273± 1

τµ+ 100 4000 variable 2180± 25
C 100 20000 fixed 144± 3

τnoise 100 20000 fixed 1700± 200
D 13000 20000 fixed 6.3± 0.1

Here, τnoise is fixed from Eqn. 12. C is found from
from normalizing A′ from Eqn. 12 by using the ratio of

the total run times of the two data sets in the following
equation.

C =
(

A′
tin, up

tout, up

)
(14)

C. Fitting precession data

In the note by Ticho[9], he explains that the expected
decay time histogram, with the magnetic field on, will
have two different curves for up and down events. They
are given in functional form as follows.

Nup(t) = [E + F cos (ωt)] e
−t
τ

Ndown(t) = [E − F cos (ωt)] e
−t
τ (15)

(16)

Taking the difference of these will necessarily increase the
amplitude of the sinusoidal component, giving

Nup(t)−Ndown(t) = [G + H cos (ωt)] e
−t
τ . (17)

The range with which to fit this function starts at t = 800
ns so as to avoid the times less than about 500 ns where
the µ− decay is dominant. For the end of the range, we
chose 10,000 ns because it minimized χ2 and because the
sinusoidal characteristic of the plot was still apparent on
this range of t ∈ [800, 10000].

D. Errors

The errors produced by ROOT’s MINUIT analysis
program are purely statistical in nature. They are the
largest contributer of error to the data. The next sig-
nificant error in all fits of the histograms is due to the
fluctuation of the t = t0 timing. This second error, taken
as the σt of the Gaussian fit seen in Fig. 9 and Eqn. 11,
combines with all errors by the relation below:

σtot =
√

σ2
t + σ2

s (18)

where σs is the statistical error of the values obtained
from the fit. For all calculations, σt = 9 so the equation
becomes:

σtot =
√

81 + σ2
s . (19)

For the error of the g-factor, the percent errors must
be used. The formula is as follows.

δg =
δω

ω
g (20)

inserting Eqn. 8 into the above equation yields:

δg =
δω

ω
(725 ns) ω. (21)
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IV. DATA AND NUMERICAL FITS

In the following formulae, all numbers that do not have
errors are fixed before fitting to their perspective his-
tograms. The errors given in these formulae are always
statistical, whereas the errors of individual parameters
are found from from Eqn. 18.

Data acquisition without the copper target was run
for 71.1 hours. Fitting the variables over the appropriate
ranges as shown in Tbl. IV resulted in the following:

f(t) = (76± 2) exp
( −t

1700± 200

)

+ (265± 6) exp
( −t

2197

)

+ 9.8± 0.4 (22)

Data acquisition with the copper target in and the
magnet off was run over a cumulative course of 14 days,
8 hours, 3 minutes, and 43 seconds. We took the data,
corrected for t = t0, and binned it into 100ns bins. We
fit the data to Eqn. 13 as seen in Fig. 11, which gave:

f(t) = (626± 1) exp
( −t

170± 13

)

+ (273± 1) exp
( −t

2180± 25

)

+ (144± 3) exp
( −t

1700± 200

)

+ 6.3± 0.1. (23)

With the magnetic field on, the fit gave:

Nup (t)−Ndown (t) = (220± 34) + (58± 30)
× cos ((0.00276± 0.00014) t)

× exp
( −t

2100± 180

)

+ 0.59± 0.01 (24)

Notice the large error on all but the precession frequency,
which is what we are after. This effect is understandable
as we did subtract two histograms. This inherently in-
creases the errors of coefficients but has only a small effect
on errors inside a functional construct such as a cosine.

V. CONCLUSION

The results show that the µ+ mean lifetime is

τµ+ = 2180± 27 ns, (25)

the mean lifetime of the µ− lepton in copper is

τµ− in Cu = 170± 16 ns, (26)
and the precession frequency of the µ lepton in a uniform
magnetic field of magnitude 32.4 gauss is

ω = 0.00276± 0.00014 ns−1. (27)

This gives the value of Dirac’s g-factor :

g = 2.0± 0.1. (28)

All of these values agree with the currently accepted val-
ues shown here[10]:

τµ+ = 2197 ns
τµ− in Cu = 164± 2 ns

g = 2.00233 for a muon (29)
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FIG. 10: Fitting the target-out data with Eqn. 22. Data includes 12735 up events, χ2 = 1.02.

FIG. 11: Fitting the target-in data with Eqn. 23. Data includes 43674 events and the fit has χ2 = 1.26.
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FIG. 12: Fitting the target-in data with Eqn. 23. This histogram is a blow-up of FIG. 11, with 20 ns bins in order to have
better resolution on the µ− lifetime in copper. Data includes 24048 events and the fit has χ2 = 1.38.

FIG. 13: Fitting the precession data with Eqn. 24. Data includes 14495 events and the fit has χ2 = 1.09.


